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We study some three-dimensional gas flows near the characteristic surface extended over
a homogeneous polytropic gas at rest.

Flows originating near the characteristic surface of arbitrary form extended over the
gas at rest, were studied for the plane problems in [1], including the case when the inter-
face of the perturhed region and the region at rest, was found to be a surface of weak dis-
continuity of the basic gasdynamic quantities,

Below we consider, in addition to the case of a weak discontinuity, the case when the
characteristic surface is a surface of strong discontinuity. This corresponds to the propaga-
tion of normal detonation waves (the Chapman — Jouguet condition holds at the wafe front).

Solutions are constructed using the class of three-dimensional potential double waves
whose equations were first obtained in [2]. Using the double waves we can only deal with
the case when the characteristic surface will, at any instant ¢, be a developable surface
(S) in the physical (x,, x,, x,)-space (cbviously the plane case is included completely,
without any restrictions imposed on the form of the surface).

Generally speaking, we can construct, for a given characteristic surface, an infinite set
of flows in its vicinity. We settle the problem of inclusion of the double wave flows into the
class of arbitrary, safficiently smooth flows corresponding to a given characteristic surface,
For this purpose we derive and solve the transfer equation for the discontinuities of normal
derivatives of the basic functions, which holds along any characteristic lying on the char-
acteristic surface,

We also show, that for sufficiently long periods of time, the flow near an arbitrary
characteristic surface (S) can approximately be regarded as a double wave.

This is valid for both, the surface of weak discontinuity (S) and for the flow behind a
normal detonation wave.

1. Equations of three-dimensional double waves can be written in the hodograph plane
of velocities u, and u, us [2 and 3]:

Ry ¥y, — 2R, Wya + Ry ¥y = 0 (1.1)
By (T +1 + ¥57) — 2Ry, (I, + W1 W) Ry (Iyy +1 -+ W33 = 0
Ryy Xy — 2Ry Xy + Ry X1y, =0
Uy = ¥ (g, uy), I' (g, uy) = %, % =1/ (y —1)
where y is the specific heat ratio, ¢ is the velocity of sound, X (u,, u,) is the distribution

function and .
Rip = =TTy + T /% (&), + V¥, Gli=12 (1.2)
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the subscripts accompanying ¥, I" and X denote differentiation with reapect to u, and u,,
and 8y is the Kronecker delta.

Ii the function ¥, I" and X are known, a flow in the physical (x,, x,, %;)-space can be
found from

T +u +¥¥) 4 X, =2 + ¥z (=12 (1.3)

Introducing polar coordinates r and ¢ (u; = 7 COS @, Uy = 7 SiN ¢} , we can
write (1.1) in the form

r2  r r v.: 2 ¥
(L) () (b v

1 4 2 | ,
55 (Feot r8) (= D2 -+ 292) = 0

r

\ r2 r rY¥2 2 L) v \

L (=52 + 540 )2 (Fw "“Tw) (e — S )+
! 1 a ) AR r \ 9 ) r.2
i oo+ B (02 4 o S0) -2 oy

r?

r s | ¥
+ 2 ; (1 '}_ ‘.Frz + —rq-j—) —“r_l-’ (1‘7‘\1].@— l‘:p‘i/'r')?. = O

(1.4)

To* v, r¥\  ay X
T, . A T g

1 I
+ 77 Koo b 7X) (=2 4 5 4 - 02) =0

@

which is more suitable for investigating the behavior of the flows defined by (1.1), at the
boundary of the region of rest (u; =0, i = 1, 2, 3).

Let us take the velocity of sound in the unperturbed gas as unit velocity. In [4], three-
dimensional double waves were used to construct flows behind the normal detonation and
shock waves of constant intensity. Boundary value problems were stated and distinct
solutions studied. When investigating the conditions on the line r = 0 for the system (1.4)
which arise in the problem on the adjacency of the double wave to the region of rest we
shall use, in addition to the results of [4], the following theorem.

Theorem. Instantaneous stream lines of a perturbed flow are, at any instant, orthogonal
to the weak discontinuity surface over the gas at rest.

This theorem was proved for the plane case in [1] and it can be easily extended to the
three-dimensional case using the kinematic conditions of compatibility on a weak dis-
continuity. Using this theorem and performing on r and @ the operations analogous to those
performed in [1 and 4] when investigating the flows behind a shock wave, we find that the
conditions

¥ =0, ¥, =0, ¥, =p(p)
' = «, r, =0, . =v(9) (1.5)
X =0, Xo =0, X, = A (9)

v (p) =1 +pn(9) (1.6)

should hold on the line r =0,
Condition (1.6) is obtained on passing to the limit as 7+ 0 in

[ur (Trt- w1 4 ¥¥1) + use (Pat s+ YTy | 1
Ve fe
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which was obtained in [4] and which corresponds to the fact that the normal velocity of
propagation of a weak discontinuity is constant. Equations of motion of a weak disconti-
nuity can be obtained from (1.3) by putting r = 0, and are )

z, =Acosp — A'sing — ( cos @ — p'sing) 7 4 (vcos@ — v'sin @)t
z, =Asing -+A cosp — (using 4 cosq) 3 + (vsing 4 v cosg) ¢

Combining the conditions of the developability of a ruled surface given by (1.7) in the
(%y, %3, X3)-space we have, at any instant ¢ = &,

—pnecos@+ psing ~ (L 8in @ 4 u" cos @) 1
sing (" + @) 05 @ (" + 1) 0] =0
—sinQA" + A+ W +Vt] cos@[A AW+ V)] O

Thus we see that the surface of a weak discontinuity behind which the flow is a
double wave, can only be a developable surface. The functions A (p) and p (p) are
arbitrary and can be used to specify, at any instant, an arbitrary developable surface as
the surface of weak discontinuity, The values j1 = 0 and v = + 1 correspond to the plane
case studied in [1].

Continuing our investigation of the problems posed for the system (1.4) with the
initial conditions (1.5) on the line 7 = 0, we shall assume that the fanctions ¥ and I have
continuous fourth order mixed derivatives containing second order derivatives with respect
to r and.Q in any order. This assumption is essential, and this property of ¥ and I is
menifest in a number of real flows, e.g. (see also [1)) in a seli-similar flow occurring
behind a conical normal detonation wave generated by a point source moving with constant
velocity. This flow was first investigated in [5] where it was found that a seli-similar
double wave adjoins, through a weak discontinuity, the region of a homogeneous gas
moving with constant velocity.

Note. Obviously, all the results formulated for the flows adjacent to the region of

rest through a weak discontinuity remain valid when the region of rest is replaced by the
region of uniform motion.

Using the previons assumptions we can write ¥ and I as

W="P+1/2rzwrr(r% P) O<ry<r)
(1.8)
FP=x+rm+1rT,., (re, 9) oKrrsT)

and obtain similar expressions for Y,, ¥, I',, and T. These, together with (1.6),
yield the following expressions for the coefficients of {1.4)

T2 r 2
et e =V R R0
I\l — ¥, %, = 0(r?) (1.9)

T r
'—'Pr’ +';" +'§'lprz =Tr (—‘Z‘VP" (rl‘*9 (P) 'l" 2P\Frr("¢.*,, (P) +“s") + 0(7‘2)
orp*<r, 0‘<’¢‘<’)
[We — To¥, = r(w' —pv') +0(r)

Multiplying all Eqs. of (1.4) by r and using (1.9) we easily see, that all coefficients
of the second order derivatives in the new system are continuous at r = 0, and the
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coefficients of the second order derivatives with respect to @ are of the order O (1). The
line 7 = 0 will represent, for this system, a line of parabolic degeneracy and it will, in
addition, be a characteristic.

The system (1.4) is nonlinear and the theorems of existence and uniqueness of
solution of the problem when the initial conditions are given on the characteristic line of
parabolicity, are only known for some linear systems in both, hyperbolic and elliptic cases.
Here we shall attempt to obtain, within the assumptions made, approximate representations
of the fonctions W and I, a simplified equation for X and to investigate the problems withfor
given initial conditions for this equation. Solving the obtained equation we can obtain an
approximate expression for X. Moreover, this equation can be used as a model in solving
the problems for. (1.4). In the hyperbolic case it can be shown to possess a solution. Both,
the system (1.4) near r = 0 and the equation for X, are of the same form since the coef-
ficients accompanying the second derivatives are the same in all Egs. of (1.4).

Let us find approximate expressions for ¥ and I". Using the relations {1.9) following
from the continuity of ¥, 4o, 8nd ['rr¢e, and the estimates

»

. ¥ W,
Wro =7 =0(r), Te—==0(r), F=p"=0(r),

T..

rQD — V”+ 0 (r)

obtained from the first two Eqs. of (1.4) by retaining in them the terms of the order O (1)

we obtain, for ¥ (0, ¢) and T',, (0, ¢), the following system of equations

Wy (0, @) (— ¥4 w24 1)+ (07 ) (— 29T, (0, @) + 2pW,(0, @) + v¥/2)=0

o (0, @) (— v 12 + 1) + (V' + ) (—2v1,, (0, @) + 20, (0, @) + v* /%) —
—_E WL 2N L B v — =0 (1.10)

which yield the following approximate expressions for ¥ and I" at small r:

(1.11)
‘Fzrll%“YWi»i*ﬂ?—(H"-f‘ wrt, T+ rv-{—.l{(rjw“vsm(v + ) v'@‘"rs

V’z .% P’Z 2 p'.-

{we note that the third order derivatives with respect to r, if they exist, cannot, in general,
be determined uniquely {1h.

Assuming that X is twice continuously differentiable in r and @ at small 7 and using
(1.9) and (1.5) together with the expressions for ¥, (0, ¢) and I', (0, @), we obtain
the following approximate expression for X:

1) v§
Frr— 9—13—” (oo + %) =0 (1.12)

v

The sign of V (§) determines the type of this equation. Thus, if the density in the
perturbed flow increases with increasing distance from the weak discontinnity Eq. (1.12)
is hyperbolic for r > 0 (this occurs e.g. near a weak shock expanding behind a normal de-
tonation wave). If, on the other hand, the density decreases (as it happens in a rarefaction
wave), then (1.12) is elliptic for r> 0. In the plane case (= 0,v = 1) (1.12) becomes

rNp ke (y +1) Koo + 7 X)) =0 (1.13)
In the earlier work [1] we have investigated problems for (1.13) with initial conditions
(1.5), using the theorems given in {6 and 7]. We can apply the same procedure to (1.12)
after reducing it to its canonical form. Suppose, that in the hyperbolic case we have
Vil

.2 P
vl

+0
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along the segment MY lying on the axis r = 0, Then a unique, twice continuously differenti-
able in 7 and @ solution of the stated problem exists in the region bounded by the character-
istics of two families

[EE—— ! 2 , P B '2_}_}12 ,
2V e+ * W=y 2V D\t de =1 (1.14)

v3p2

passing through M and N, provided that A (@) has four continnous derivatives, In the el-
liptic case the statement of the problem is incorrect in the classical sense, and various
regularizing methods {1] can be employed to obtain its solution.

When ¥ and I depend only on 7 (v and p are constant and the flow is steady), Fourier's
method can be used to solve (1.12). The following approximate expression can be derived
for the general case, at amall r:

Y-1 v

X+ =L (W 4 W) e (1.15)

(Expression for %, (0, @) is obtained analogously to those for ¥, (0, ¢), and
Iy (0, ¢)). Having found X in the small neighborhood of r=0, Ar =4 < 1, we can solve

(1.12) in the hyperbolic region using the method of characteristics.

Thus the class of three-dimensional double waves allows the construction of some
solutions of gasdynamic equations in the vicinity of a weak shock, provided that this shock
is, for any t, a developable surface.

2. In the following, an essential part will be played by the transport equation of the
discontinuities of the directional derivatives of the functions u4; and ¢, viz. |u;¢], and
[cop] along any bicharacteristic lying on the characteristic surface

® (zy, Ty, 23) = (21)

In the plane case when the surface ® (x,, x,) = ¢ is a surface of a weak shock propagat-
ing through an unperturbed gas with the velocity of sound, the transport equation is derived
and investigated in [1] (9] indicates the possibility of obtaining such an equation; in the
case of a two-dimensional flow the transport equation for the discontinuities of derivatives
along the characteriatics was studied in detail in [10]).

In the following we shall assume that the characteristic surface (2.1) propagates with
a normal velocity D uniform with respect to & fixed coordinate system (velocity of propaga-
tion relative to the gas is equal to the velocity of sound ¢; if on (2.1) |u] = 0, i.e. & weak
shock moves through the region of rest, we have D = ¢ ). Moreover we shall assume that the
velocity of sound, and hence the density, are constant on the characteristic surface, and the
velocity vector U is always orthogonal to the surface and its modulus is constant. These
assumptions allow us to include in our study the motions behind the normal detonation
waves when the Chapman — Jouguet condition

lu] 4¢=D (2.2)

holds at the wave front, which means that the detonation wave moves with the velocity of
sound relative to its combustion products. The function P satisfies the usual character-
istic Eq.

(Qyuy + Doty + Dyy — 12 — 2 (O + DF 1 O2) =0 (2.3)

Using (2.2) together with the previously made assamptions, we can write (2.3) as

ad
D + D2 4 Dy* = %5 , D, = 7 (2.4)

Equations of the bicharacteristics can be written as
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z = A0; — u; (U1 D1 + U Dy + U3 — 1)

. . (2.5)
t =—(ul(D1+llc2(I)2—|—U3(D3—1) (i=1,2,3)

The right nall vector of the characteristic matrix of the gas dynamic equations written
for u; and ¢, has the form

r=(d)17 q)z, q)3’ 7“1/2V®12+®22+®32)

therefore we have the following relation for the discontinuities of the direction derivatives
of the functions u; and ¢ ([9])

([uo], [ws0), [Uso], [ca]) =or (2.6)

Here o is some scalar function, and [fg] corresponds, in the case of a weak shock,
to the difference of two directional derivatives of the function f, taken at both sides of
the shock (when one side is at rest, we have [fg] = fo in the perturbed flow).

In the case of a normal detonation wave we have two distinct possibilities. First we
shall conuider the case when the derivatives of 4; and ¢ are finite at the wave front (this
is a cave of secondary importance, since such flows can only occur behind the plane de-
tonation waves). Let us put [fo]l = fi0 — fa@, where f;q and fazq are direction
derivatives corresponding to two arbitrary flows behind the detonation wave of the given
form. Jumps in [fg] satisfy (2.6) when f denotes a basic function, and when the derivatives
are finite, the case of normal detonation can be dealt with similarly to the case of a weak
shock.

Let us now introduce new independent variables into the gasdyramic equations

8=z (i=1,23), & =D (z, 2, 25) — ¢ (2.7)

Utilising now the fact that the differentiation with respect to &;, & and & will be
directed inwards on the characteristic surface, we can carry out operations analogous to
those performed in [1] (par. 3); equation defining o can be written in ita final form as

! c J—
o' + Lht 6+ Do (O + On + Op) (5 + 5 u]) =0 28)

Here we have used ¢t as a parameter on the bicharacteristic (0" denotes a derivative of
o with respect to t), ¢ = const is the velocity of sound and |II| = const is the modulus of the
velocity vector on the surface @ = ¢t. Eq. (2.8) is the Bernoulli’s equation and it can always
be integrated in quadratures, provided that an explicit expression for AQ as a function of ¢
is known along the given bicharacteristic.

In the case of a weak shock ( |ll| =0, ¢c=D) Eq. (2.8) becomes

o +(r +1) (22) 0® 442 0 AD =0 2.9)
Let us consider the case when the normal derivatives of u; and ¢ become infinite on

the detonation wave front. We shall follow [8] (chapt. 6) and represent the first approxi-
mations of u; and ¢ as

Ui = S (q))gl (.’L‘l, z21 xsi t) + qi (zl7 x21 x31 t)
¢ = S (‘P) g(zlv 127 %v t) + q(xlv 1‘2, xsv t)

Here @ (Z;, &3, T3, t) = 0 is the equation of the characteristic surface, S () is
a certain generalized function such that S (0) = 0 and the derivative S—; (¢) of which
becomes infinite when @ =0, the functions g; and g do not vanish and are sufficiently
smooth on the characteristic surface, while functions g; and ¢ may include weaker singular-
ities and their limiting values on ¢ = 0 coincide with the values of u; and ¢ on the wave
front. We shall investigate the behavior of the functions g; and g along the bicharacteristics on
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the surface @ = 0, It is obvious that outside the surface ¢ = 0 (® = ¢} functions 8is & 9
and g are not uniquely definable,

Assuming that the expressions for %; and ¢ hold in some neighborhood of @ =0 and
equating to zero the coefficients of S_, () in the system of gasdynamic equations (as it
was done in [8] for alinear system), we obtain

(81) 82, 83, 8) == Op X (2.113)

where Op (Zy, %3, Ty, 1) is a scalar function.

Let us now assume that two distinct flows behind a detonation wave of the given form,
are apecified by 8;*, g* and g;, g with the corresponding ops and op) respectively. Then,
multiplying in the usuval manner all equations by the components of the left null vector of
the characteristic matrix, performing the summation and taking, subsequently, the differ-
ence of two relations obtained for two solutions with o* and op), we obtain the following
transport equation for op =op* — op along the bicharacteristic

7 "’"1
Gr “fCD:;":}:—iA(DGR:O (2.1

Let us now give a geometrical interpretation of AD. We know that, when a surface is
given by Eq. %y = F (x,, x;), then the radii of curvature R, and R, of the principal normal
cross sections are defined by

(rt—sHRP—h[2pgs —(1 + POt — 1+ gD rlR + 1 =0

, p (2.12)
F 2 3F aF aF RS
=, = 8= P, g=__ W T ) 3
(r 61‘12 6:4:23 $ axlaxz P 6‘x1 7 81‘2 ’ h= V1+P "‘}"]

Obtaining r, t, s, p and ¢ from (2.1) in which we find an implicit expression for x, as
a function of x, and x, and using the relation

202,05, + O,PDy; + D,DDy;) + DDy -+ DD, - DIy, - O

derived from {2.4), we obtain

1 1 2pgs—(1+pYht—(1+ g2
72‘{”’”7{"{: Pgs — ( -Ht'h)a U+ paw (2.13)

Thus A® = 2H/D where H is the mean curvature of the surface {2.1),
Let us find A® = f (2) along the bicharacteristic for the case of a weak shock. As-
suming without loss of generality that ¢ = 1, we can write the Eqs. of bicharacteristics as

=0, =1 (2.1%)

Since Eokq’ik =0, ®; are constant along any fixed bicharacteristic. Consequently
the bicharacteristics are straightlinesinthe (x;, x,, %,, f)-space. Utilizing the constancy

of ®; and differentiating A along the bicharacteristic we obtain, with the help of (2.1),
the expression

. 2 ;
— (AD) = (AD)® — X XN (D D1,Dy5 + DDy Dy +- DBy Dy)  (2.15)
Next, using (2.1) we can obtain the following expression for the Gaussian curvature
K=1/RR, =rt —/ht:
- 1
K= 70,0, (D112 Q5 + OOy Dy - D05, D,,) (2.16)

Further, the identities obtained by differentiating (2.1) twice with respect to all e
and x;, and differentiation of X along the bicharacteristic (2.14), together yield

(K) = — ADK (2.17)
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Finally, (2.15) and (2.17) together with (2.16) yield the following system of ordinary
differential equations along a fixed bicharacteristic for R, (t) and R, (¢):

£, 1Y 11 £ty 1
(wim)=—mre (wm)-—wm (& tw) @9
General solution of (2.18) can be written in the form
R, =1t +C4, R, =t 1 C, (2.1

where C; denote arbitrary constants. Inserting into (2.9)

i i
A(D:tﬁ-cl+i+62
and integrating the result, we obtain the solution in the general form
6= 1
CViraVit Gl )In(VitCi+ Vit G+ Cl

(2.20)

where C is an arbitrary constant. Formula (2.20) defines the principle of decay of partial
derivatives of the solution with time, on the surface of a weak shock moving through the
region of rest, in the three-dimensional case.

Using the Chapman-Jouguet condition, we can reduce the equations of bicharacter-
istics (2.5) in the case of normal detonation, to

dt [

= (i=1,23) 2.21)

d. X3

o =Dy,
Inserting into it
D "
A= s W z; = Dr*

we obtain, in place of (2.21) and (2.4),

dxi‘ dt 2
-;1-!; = (Dxi.’ ?iﬁ = '1, (‘Dx,“ -+ (D?c‘. -+ (Dz’. =1
respectively, and
3
N 1 1 4 1 1
e = —— L .
iz___Jl(Dxi ) t+-C Tt -6 AD = Dz(z_:,_ C: _i’_m) (2.22}

Inserting the expression obtained for A® into (2.11) and integrating, we obtain

¢ Y—1

or = C[(t+ Cy)(t + Cy)] P (2.23)

We shall show in the next paragraph, that integration of (2.8) is pointless when
A® 4 0, while when AD =0, then the solution {(2.8) has the form

op = D2(0+ %‘-3~t)_l (2.2%)

3. Let us now investigate the behavior of the partial derivatives of the basic functions
on the characteristic surface, when the flow behind a weak shock or a normal detonation
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‘wave belongs to the class of double waves. We shall first consider the case, when the
swiace of a weak shock moves through the region of rest. The right null vector 7 of the
characteristic matrix can be written, with the help of (1.5), =s

_(cose sinp p y—1 ,
—( v -'V——, 7’ _2—"') (31)

while the vector representing the discontinuities of the directional derivatives will be

((wio], (0], Tusal, [conz—([";;], [%‘.;.] ["j,_j] [g_;.])

Next we find du,/0t and Ju,/9¢t from (1.3) (by differentiation with respect to ¢ and
change to the polar coordinates) for r = 0, and use (3.1) and (2.6) to obtain the following
expression for the scalaro; corresponding to the double wave type flow:

i
EECE N A (3-2)

It should be noted that B, (¢) = const along a fixed bicharacteristic. Since the

surface of a weak shock is, in this case, a developable surface, it follows that one of the

radii of curvature of the principal normal cross sections bscomes infinite along any bi-
characteristic. Expression (2.20) is then replaced by

Sq

1 1

6= (T+1)(t+3)+ A+ B — (1) +B)

{4, B==const) (3‘3)

For large t we obviously have

lo — o4l =0 (¢7%) (3.4)

Let us consider, in the space of (x,, %, %3, ¢}, the neighborhood A; of a weak shock
D (z;, x5, 2,) = ¢, characterised by the fact that the distance p of any point ¥ of this
neighborhood along the surface ® = ¢, will be less or equal to &, i.e.ip (M, D) < k.
Let us now assume that the perturbations present in the flow behind the weak shock, lag
behind this shock (i.e. the flow is sufficiently smooth near the shock) and let the shock
be also sufficiently smooth. Then, for - ~ O (k") the difference between the similar
first order partial derivatives appearing in any two solutions corresponding to the given
form of the shock, will be of the order O (k) (see (3.4)). Then, since the limiting values of
u; and ¢ are identical for all the flows on ® = ¢, we find, from the Taylor expansions, that
the basic gasdynamic quantities in A coincide with an accuracy of O (k?), when

t ~ 0 (k7).

Thus, any flow behind a weak shock can be approximated by a double wave flow,
provided that the time interval is sufficiently large.

Note, Using (2,20) we can construct any spherical flow near a weak shock travellin
through a region of rest which will possess a self-similar flow of the triple wave type [3],
and obtain analogous solutions.

Let us consider the case of a normal detonation. The boundary value problems for the
system (1.1) when the flow behind a normal detonation wave belongs to the class of three-
dimensional double waves, were stated in [4]. It was shown, that, in order to constmct the
flows, we must solve (1,1) with the initial conditions on the line uy = f (u, ), the latter being
a line on which the system is parabolic. However, this line is not a characteristic, and the
system (1.1) is hyperbolic in the neighborhood of u, = f (u;). This problem is, in genersl,
correct, and & unique solution can usually be found in the class of double waves, corres-
ponding to the motion of a normal detonation wave represented by a developable surface at
any value of ¢.

Initial conditions on the line u, = f (u,) have the form [4}
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u? 4 u? + ¥ =A% =const, ¥ =u¥, +u,¥, for ¥
P'=c/(y —1) =const, T +Tu=—Ac for T (3.5)
X=0, X,=F(Xy) for y

where ¢ is the velooity of sound, the functions f and F are arbitrary and are used to define
the form of the wave at any instant of time. Using (3.5) and

Uy uaWo = wAy + WAy, =0 ((=1,2)
(A=T + 1 (w3 + ug? + ¥9)

which follow from (3.5) and (1.1) we find, from (1.3), that all partial derivatives of the
functions u; and u,, and hence of u, and ¢, become infinite at the wave front if the wave
is not of a plane form.

If we consider the complete gasdynamic equations and assume that

u; = ADO®,, ¢ = const

are given on the surface @ (x,, x,, %,) = t of the detonation wave which is also a character-
istic surface, we find that we can calculate all the inward derivatives of u; and ¢ on the
surface @ = ¢ and obtain a non-homogeneous system of four linear equations defining the
directional derivatives u;p and cgp.

The determinant of the coefficients of u;p and c@ vanishes, while the rank of the
matrix of the expanded system, as shown by a direct check, is equal to four, provided that
the detonation wave is not a plane wave. Thus we see, that the fact that the partial de-
rivatives of the basic functions become infinite at the wave front, is the most important one
in the investigation of the propagation of a normal detonation wave,

We shall use the transport equation {2.11) to correlate the general case of the flow
behind a detonstion wave with the double wave flow, assuming that g;* and g* refer, in the
expressions for u; and ¢, to the double wave type flow, while g;~ and g refer to the gen-
eral type flow (provided that a flow different from the double wave type exists). Since (2.23)

gLl
6r =6p" —o6p =0 (t b H")

it is clear that the functions gi'*', g*and g;~, g~ tend to the cammon limit with increasing
[ X

Thus we can also atate in the case of a normal detonation, that an arbitrary flow near
the detonation wave will, at large ¢, approximate a double wave in the sense that the prin-
ciple describing how the derivatives of the basic functions decrease with increasing dist-
ance from the wave front, coincides with the corresponding law describing this phenomenon
for & double wave,

1f the detonation wave is a plane wave, it follows from {2.24) that a flow near such a
wave will, at large ¢, approximate the self-similar Riemannian wave, since the following
relation holds

o _ 2D
a e

Note. Solation (2.28) for @) can be nsed to correlate arbitrary flows behind an expand-
ing, normal spherical detonation wave with the self-similar solution due to Zel’dovich [10]
of the problem on the expansion of a detonation wave from a single point. In this case we
can also assume, for large ¢, that an arbitrary flow tends to a welfsimilar flow in the above
sense.
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